
It is a rare developer who has not heard the phrase
“service-oriented architecture” bandied about. Just what
is a service-oriented architecture (SOA)? And, what
exactly does this have to do with my issue management
system, TestTrack Pro? In this paper we’ll explain why
service-oriented architectures have come into vogue, the
technologies used to implement them, and how
TestTrack Pro fits into the big picture.

What Is SOA?
The concept of a service-oriented architecture is not new.

Applications have long been built to provide services to other

applications. What distinguishes SOAs from other architectures

is that services are loosely-coupled through the use of platform-

neutral Web interfaces.

Loose coupling is a good thing. It frees the client from needing

to know what language the service is coded in or what platform

the service runs on. The client communicates with the service

through a well-defined interface, and then leaves it up to the

service implementation to perform the necessary processing.

Compare this to services based on DCOM or other component-

based architecture interfaces. In these cases the client must have

significant insight into how the service was implemented—and

the client must be coded just right to avoid technical snafus.

Why SOA?
The popularity of Web services-based SOAs is primarily due to their

inherent reusability, interoperability, flexibility, and cost efficiency.

Reusability
No developer wants to reinvent the wheel, but many do, over

and over. The holy grail of software development has long been

the reuse of existing functionality. Enterprise developers faced

with a hodgepodge of computing environments have often run

into this challenge.

Solutions developed in different enterprises, even in different

departments in the same enterprise, are often coded in

languages with different programming interfaces and protocols.

While an application may contain business logic that could, in

theory at least, be reused across the enterprise, the harsh reality

of incompatible architectures results in unrealized potential.

In a Web services-based SOA the only thing the client needs to

know about is the interface to a service. Implementation details

are hidden, so application integration is much simpler.

Interoperability
Web services-based SOAs are designed to be interoperable. The

interoperability lets clients and services communicate with each

other no matter what platform they run on.

Platform neutrality and standards-based protocols and

technologies ensure that Web services-based SOAs are accessible

from both within and outside the enterprise (with appropriate

security precautions).

Tightly-coupled SOAs, in contrast, are interoperable only with

clients that are built on the same technology base as the service.

They also have trouble spanning corporate firewalls and other

security measures that hinder their functionality.

Flexibility
The simplicity of Web services-based SOAs results in more

flexible software systems. Since the inner workings of a Web

service are shielded from the client, developers can freely

change the implementation. In a tightly-coupled architecture,

At Your Service:

TestTrack Pro’s Role in a Service-Oriented Architecture

Managing Process, Change & Quality
Throughout the Enterprise

the different components of an application are tightly bound
to each other, sharing semantics, libraries, and often sharing
states. This implementation of SOA is anything but flexible.

Cost Efficiency
New technologies become popular when they make financial
sense. Web services-based SOAs require only a modest effort to
implement and even less effort to make use of in an application.
Tightly-integrated SOAs are generally not cost efficient. They
are costly to build, maintain, and extend, because changes in
one component often requires changes in other components.

Web Services Primer
Web services are the technology underlying most
contemporary service-oriented architectures. They are based
on widely accepted and used W3C standards such as XML,
SOAP, and WSDL. It is these standards that form the basis of
TestTrack Pro’s Web service functionality.

XML
The eXtensible Markup Language (XML) has become
the de facto standard for describing data to be exchanged
on the Web. With XML, data can be exchanged between
incompatible systems. Since XML data is stored in plain text
format, XML provides a software- and hardware-independent
way of sharing data.

XML involves the use of tags that describe the contents of
a document. An XML tag identifies the information in a
document, and also the structure of that information.

For example, the following XML markup describes the
structure of a TestTrack Pro phone number field.

The plain text nature of XML makes it easy to see that a phone
number in TestTrack Pro is a compound field that consists of
two string elements, numbertype and phonenumber.

SOAP
SOAP (Simple Object Access Protocol) is a simple XML-
based protocol that lets applications exchange information
over HTTP. SOAP avoids the compatibility and security
problems common to RPC-based (Remote Procedure

Call) communication protocols like DCOM and CORBA.

SOAP also provides a way for applications running on
different operating systems, with different technologies and
programming languages, to communicate.

WSDL
WSDL (Web Services Description Language) is an XML-based
language for describing and accessing Web services. A WSDL
document is written in XML that specifies the location of the
Web service and the operations (or methods) the service exposes.
For example, the following WSDL describes the TestTrack Pro
Web service that deletes a defect.

Writing applications to take advantage of TestTrack Pro’s Web
services takes a surprisingly small amount of work. Many
programming environments now understand WSDL and
automatically generate classes to handle the XML serialization/
deserialization and network communication.

TestTrack Pro as a Service
Now that we’ve covered the basics of service-oriented
architectures and how they’re implemented using Web services,
it’s time to delve into the way TestTrack fits into this new world.

Sure, you could continue using TestTrack Pro just as it comes
out of the box. After all, TestTrack Pro’s capable Web and
rich client interfaces are probably why you purchased the
tool in the first place. But don’t just stop there; TestTrack
Pro is also built to be used as a service to other applications.
The TestTrack Pro Server concurrently supports access
from the TestTrack Pro Web and rich clients, and also from
applications that call the server’s SOAP-based API.

<element name=”PhoneNumber” type=”ttns:PhoneNumber”/>

<complexType name=”PhoneNumber”>

 <sequence>

 <element name=”numbertype” type=”xsd:string”/>

 <element name=”phonenumber” type=”xsd:string”/>

 </sequence>

</complexType>

<message name=”deleteDefectRequest”>

 <part name=”cookie” type=”xsd:long”/>

 <part name=”defectNumber” type=”xsd:long”/>

 <part name=”summary” type=”xsd:string”/>

</message>

The flexibility offered with TestTrack Pro’s SOAP API opens
the door to many interesting applications. For example, you
can create a simple application to extract and report on defect
information in new ways, or you can leverage TestTrack Pro’s
strong workflow and issue management capabilities to create
new classes of applications.

TestTrack Pro’s SOAP API lets you extract, modify, add, and
combine TestTrack Pro data in ways that go far beyond what is
possible using the provided Web and rich client interfaces.

Here’s a short list of the ways other users are putting TestTrack
Pro’s SOAP API to use.

Easy Applications
Creating a TestTrack Pro SOAP client application is remarkably
simple. The first step is to set up the TestTrack Pro SDK. The
SDK contains everything you need to get started, including
three SOAP client licenses (three concurrent connections)
and exhaustive documentation of the API’s data types and
operations. You’ll also need a Web server (Apache, IIS,
Netscape, etc.) that is supported by the TestTrack Pro Server.

You can use just about any programming language to create a

TestTrack Pro SOAP client application, including Perl, Java, C#,

and Visual Basic .NET. Keep in mind that development moves

faster if the programming environment has support for Web

services (as is now common).

To illustrate the ease of creating a TestTrack Pro SOAP client

application, we’ll use the example of a C# application that

escalates defects when they pass specific criteria. In this example,

a defect will be escalated if it is “Open,” has a priority lower

than “Immediate,” and is at least one month old. When a defect

passes these criteria, the application will change the defect’s

priority to “Immediate.”

Since our example is coded in C#, we’ll assume that Microsoft
Visual Studio .NET is the IDE used. Now here’s where
the benefit of using a Web services-aware programming
environment such as Visual Studio .NET is apparent. Instead of
having the developer hand code a TestTrack Pro SOAP interface
class, Visual Studio .NET simply requests a WSDL description
of the available TestTrack Pro services. It then processes the
WSDL and generates a C# class, ttsoapcgi, that encapsulates the
functionality of TestTrack Pro’s SOAP API.

Get Coding
Opening a connection to the TestTrack Pro server couldn’t be
easier. You just need to create an instance of the ttsoapcgi class
and logon to the database. It’s really as simple as this:

Once the application is logged on to the TestTrack Pro
database, it’s ready to query for a list of defects. We’ll use the
getRecordListForTable method for this purpose:

The argument columnsToReturn is a simple array that specifies
the columns to be returned. The getRecordListForTable
method returns a CRecordListSoap object that contains the
desired fields from each defect in the database.

• View all assigned open defects from multiple TestTrack
 Pro databases in a WebSphere Portal application.

• Automate creation of an Excel spread sheet that reports
 recently closed and current open defects.

• Create a help desk Web page to allow entry of service
 requests into an IT database.

• Review active user accounts and disable users who are
 no longer working at the company.

• Weekly email notification of open records with
 completion dates in the coming week.

• Email-based signoff process for approval of sensitive
 requests in the IT help desk database.

• Import new records directly from an Excel spreadsheet.

• Auto-escalation of defects that meet specific criteria (such as
 those that have been open a month or more).

• Integrate TestTrack Pro with Microsoft Outlook so that
 defects are automatically created as Outlook tasks.

• Create a Web page to monitorlicense usage.

• Promote files in Surround SCM based on specific defects
 that have been fixed in TestTrack Pro.

• Manage the Human Resources review process via a
 Web application.

// setup the connection to TestTrack Pro and

// logon to the database

soapServer = new ttsoapcgi();

soapServer.DatabaseLogon(database, username, password);

// return an array of defects from the current database

soapServer.getRecordListForTable(cookie, “Defect”, “”,

columnsToReturn);

Now that we’ve obtained a list of defects (that was easy), we
simply process them in turn. The code for doing so requires
walking through the list, inspecting the properties of each
defect, and updating the priority if appropriate. As there is
nothing specific to SOAP in most of this code we’ll just show
what happens when a defect is escalated.

When the application is complete processing, it’s advisable to
close the connection to TestTrack Pro so another application
can use it. This is accomplished in a single line of code:

This example shows just how easy it is to use TestTrack Pro’s
SOAP interface. Of course, in real life the application must also
deal with error checking and other exceptions (as should any
application). Even so, it is quite likely you can set up TestTrack
Pro for the first time and write a simple SOAP application all

within an hour or two.

The Hub of Activity
If you’re intent on moving towards a service-oriented architecture,
you should seriously consider putting TestTrack Pro’s Web
services interface to use. You’ll find that TestTrack Pro has many
more uses than one would first consider. TestTrack Pro offers the
reusability, interoperability, flexibility, and cost efficiency to be
the hub of many service-oriented activities.

Seapine Software,Inc.
5412 Courseview Dr.,
Suite 200
Mason, OH 45040

Toll free: (888) 683-6456
Email: info@seapine.com
Web: www.seapine.com

Managing Process, Change & Quality
Throughout the Enterprise

// disconnect from the TestTrack Pro database

soapServer.DatabaseLogoff(cookie);

// escalate the defect and update the record in TestTrack Pro

defect.priority = “Immediate”;

soapServer.saveDefect(cookie, defect)

